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Thioester enolate anion intermediates are the hallmark of
reactions catalyzed by members of the mechanistically diverse
enoyl-CoA hydratase (crotonase) superfamily.1 Many reactions
involve either hydration ofR,â-enoyl-CoA thioesters or isomer-
ization ofâ,γ-enoyl-CoA thioesters. However, Dieckmann reactions
are catalyzed by certain members of the superfamily: the anaerobic
catabolism of benzoate byRhodopseudomonas palustrisincludes
hydrolysis of 2-ketocyclohexanecarboxyl-CoA (KC-CoA) to
pimelyl-CoA catalyzed by KC-CoA hydrolase (BadI).2 This reverse
Dieckmann reaction is expected to involve addition of water to
form a hydrated ketone that decomposes to product via stereo-
specific protonation of a thioester enolate anion intermediate
(Scheme 1). We now report that the reaction proceeds with
inVersion of configuration, thereby restricting the functions of
conserved active-site functional groups.

Relevant steps in benzoate catabolism3 (Scheme 2) are (1)
hydration of cyclohex-1-enecarboxyl-CoA by BadK, a homologue
of rat mitochondrial crotonase, (2) oxidation of the resulting
2-hydroxycyclohexanecarboxyl-CoA (HC-CoA) by BadH,4 and (3)
hydrolysis of the resulting KC-CoA by BadI. KC-CoA is configu-
rationally labile at theR-carbon; in fact, the spectrophotometric
assay for BadI is based on the absorbance of the enolized substrate.2

We generated the possible substrates for BadI in situ by the
BadH-catalyzed oxidation of the separated, configurationally stable
1S,2S- and 1R,2S-diastereomers of HC-CoA. The carboxylic acids
were obtained by separation of racemiccis- andtrans-2-hydroxy-
cyclohexanecarboxylic acids5 followed by their resolution with
brucine;6,7 the configurations of the brucine salts were assigned by
X-ray crystallography. The 1S,2S-HC-CoA was identical to the
product of the BadK-catalyzed reaction.8 Fortuitously, both 1S,2S-
and 1R,2S-HC-CoA are substrates for BadH, permitting the transient
preparation of theS- andR-diastereomers of KC-CoA, one of which
is expected to be the substrate for BadI.

The identity of the substrate was determined by incubating each
diastereomer of HC-CoA with a constant amount of BadH and
increasing amounts of BadI in2H2O. Starting with 1R,2S-HC-CoA,

the pimelyl-CoAalwayscontained two deuteria (Table 1), consistent
with required configurational inversion ofR-KC-CoA via enoliza-
tion/deuteration prior to the BadI-catalyzed reaction that incorpo-
rates a single atom of deuterium (Scheme 2). In contrast, starting
with 1S,2S-HC-CoA, the pimelyl-CoA contained two deuteria with
low amounts of BadI but only one deuterium with large amounts
of BadI, consistent with interception ofS-KC-CoA by BadI prior
to enolization. Thus,S-KC-CoA is the substrate.

The â-oxidation of pimelyl-CoA inR. palustrisis initiated by
pimelyl-CoA dehydrogenase (PCDH),3 a member of the FAD-
dependent acyl-CoA dehydrogenase superfamily in which oxidation
occurs with abstraction of the 2-proR-hydrogen.9 Our purified
PCDH was contaminated with dehydropimelyl-CoA hydratase so
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Table 1. Incorporation of Deuteriuma into Pimelyl-CoA from
1R,2S- and 1S,2S-HC-CoA

1R,2S-HC-CoA 1S,2S-HC-CoA

BadH:BadIb 2H0
2H1

2H2
2H0

2H1
2H2

1:0.1 1 ndc 99 nd nd 100
1:1 nd nd 100 nd 28 72
1:10 nd nd 100 nd 76 24

a Deuterium content of the product was determined using Micromass
Quattro mass spectrometer, equipped with an electrospray ion source, and
comparing intensities of the molecular ion peaks at (M- H)- 908 (2H0),
909 (2H1), and 910 (2H2) amu.b Molar ratios of BadH:BadI.c Not detected.

Published on Web 05/21/2004

7188 9 J. AM. CHEM. SOC. 2004 , 126, 7188-7189 10.1021/ja0482381 CCC: $27.50 © 2004 American Chemical Society



that pimelyl-CoA is converted to 3-hydroxypimelyl-CoA (Scheme
3); however, this further reaction does not preclude the use of this
enzyme preparation to determine the configurations of samples of
2-[2H1]-pimelyl-CoA.

The 2-methylene group of 3-hydroxypimelyl-CoA is associated
with an ABX multiplet at 2.58 ppm in the1H NMR spectrum
(Figure 1A). When 2-[2H2]-pimelyl-CoA, obtained from 1R,2S-HC-
CoA, BadH, and BadI in2H2O, is incubated with the PCDH-
hydratase mixture in H2O, the multiplet is simplified to an upfield
doublet, establishing that the PCDH-hydratase mixture does not
catalyze nonstereospecific exchange of the 2-hydrogens with solvent
(Figure 1B). The predicted stereospecificity of PCDH was verified
using pimelyl-CoAs synthesized from enantiomers of 2-[2H1]-
pimelic acid,10-13 yielding thioesters that are equimolar mixtures
of chiral 2-[2H1]- and achiral 2-[1H2]-pimelyl-CoAs. 3-Hydroxy-
pimelyl-CoA derived from 2R-[2H1]-pimelyl-CoA did not retain
deuterium (Figure 1C), but that obtained from 2S-[2H1]-pimelyl CoA
did (Figure 1D); for reference, Figure 1E is the spectrum of an
equimolar mixture of 2S-[2H1]-3-hydroxypimelyl-CoA (Figure 1B)
and 2-[1H2]-3-hydroxypimelyl-CoA (Figure 1A).

A sample of pimelyl-CoA obtained from 1S,2S-HC-CoA by the
coupled actions of BadH and BadI in2H2O was 60% mono-
deuterated and 40% dideuterated, as quantitated by ESI-MS.
Presumably, one prochiral hydrogen on carbon-2 was 40% deu-

terated because of the competing enolization of theS-KC substrate,
and the other was 100% deuterated because it contains the deuteron
delivered to the enolate anion intermediate by BadI. The 3-hydroxy-
pimelyl-CoA resulting from incubation of this enzymatically
deuterated pimelyl CoA with the PCDH-hydratase mixture was
100% monodeuterated at carbon-2 (Figure 1F), indicating that the
enzymatically delivered deuteron was retained by the action of
PCDH. Thus, the deuteron was located in the 2-proS position of
pimelyl-CoA, establishing that BadI delivers a solvent-derived
proton to thesi-face of the carbon of the enolate anion.

In a parallel experiment, protiated pimelyl-CoA was incubated
with BadI in 2H2O, and one hydrogen on carbon-2 was exchanged,
as quantitated by both1H NMR spectroscopy and ESI-MS. When
the monodeuterated pimelyl-CoA was analyzed with the PCDH-
hydratase mixture, the deuterium was retained, again indicating
incorporation into the 2-proS position (Figure 1G).

We conclude that BadI (1) catalyzes the hydrolysis of 2S-KC-
CoA and (2) incorporates hydrogen into the 2-proS position of
pimelyl-CoA. Therefore, the stereochemical course of the reaction
is inversion of configuration.

Homologues of BadI include 1,4-dihydroxynaphthoyl-CoA syn-
thase (MenB) that catalyzes a Dieckmann condensation in bacterial
menaquinone biosynthesis using the aliphatic CoA ester ofo-
succinylbenzoate14,15 (Scheme 4). Despite the different structures
of the substrates and products for the MenB- and BadI-catalyzed
reactions, the enzymes share as much as 53% sequence identity.
We expect that the stereochemical course of the BadI-catalyzed
reaction will be important not only in understanding the roles of
its active-site functional groups, including Ser 138, Asp 140, and
Tyr 235, but also the roles of strictly conserved homologues of
these residues in the Dieckmann condensation catalyzed by MenB.
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(7) Torné, P. G.ReV. R. Acad. Cienc. Exactas, Fis. Nat. Madrid1966, 60,

419-446.
(8) Eberhard, E. D.; Gerlt, J. A. Unpublished observations.
(9) Kawaguchi, A.; Tsubotani, S.; Seyama, Y.; Yamakawa, T.; Osumi, T.;

Hashimoto, T.; Kikuchi, T.; Ando, M.; Okuda, S.J. Biochem.1980, 88,
1481-1486.

(10) Berges, D. A.; DeWolf, W. E.; Dunn, G. L.; Grappel, S. F.; Newman, D.
J.; Taggart, J. J.; Gilvarg, C.J. Med. Chem.1986, 29, 89-95.

(11) Brewster, P.; Hiron, F.; Hughes, E. D.; Ingold, C. K.; Rao, P. A. D. S.
Nature1950, 166, 179-180.

(12) Whitman, C. P.; Hajipour, G.; Watson, R. J.; Johnson, W. H.; Bembenek,
M. E.; Stolowich, N. J.J. Am. Chem. Soc.1992, 114, 10104-10110.

(13) Gallus, C.; Schink, B.Microbiology 1994, 140, 409-416.
(14) Sharma, V.; Suvarna, K.; Meganathan, R.; Hudspeth M. E.J. Bacteriol.

1992, 174, 5057-5062.
(15) Truglio, J. J.; Theis, K.; Feng, Y.; Gajda, R.; Machutta, C.; Tonge, P. J.;

Kisker, C.J. Biol. Chem.2003, 278, 42352-42360.

JA0482381

Scheme 3

Figure 1. 1H NMR spectra at 500 MHz of samples of 3-hydroxypimelyl-
CoA: A, from pimelyl CoA; B, from 2-[2H2]-pimelyl CoA; C, from 2R-
[2H1]-pimelyl CoA; D, from 2S-[2H1]-pimelyl CoA; E, an equimolar mixture
of 2-[1H2]- and 2S-[2H1]-3-hydroxypimelyl-CoA; F, from 2-[2H1]-pimelyl
CoA obtained from the BadH-BadI coupled reaction in2H2O; and G, from
2-[2H1]-pimelyl CoA obtained from BadI-catalyzed exchange in2H2O. The
triplet at 2.82 ppm is associated with a methylene group in the coenzyme
A moiety.
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